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Abstract— Generative models of natural images have long been imaging model consists of an accurate rendering algorithm
used in computer vision. However, since they only describe the followed by a degradation process. Our contribution consists of

statistics of 2D scenes, they fail to capture all the properties of i, the surface model and the rendering technique. However
the underlying 3D world. Even though such models are sufficient ’

for many vision tasks, a 3D scene model is needed when it (:ome§he main contribut-ion of this paper is to derive a complete .g(.an—
to inferring a 3D object or its characteristics. In this paper, we €rative model for images of natural surfaces. After describing
present such a generative model, incorporating both a multiscale the forward problem, in Section Il we detail a few potential

surface prior model for surface geometry and reflectance, and applications to computer vision using Bayesian inference,

an image formation process model based on realistic rendering, ghqy prefiminary results and discuss the related challenges.
that accounts for the physics of image generation. We focus on

the computation of the posterior model parameter densities, and
on the critical aspects of the rendering. We also discuss how to ] ] ) ]
efficiently invert the model within a Bayesian framework. We ~ We first define a surface modd@ which consists of a

present a few potential applications, such as asteroid modeling set of 3D verticesv (geometry) forming a triangular mesh,
and planetary topography recovery, illustrated by promising and scalar albedos, one for each triangle. We assume that
results on real images. all the parameters are random variables governed by a joint
probability distribution.

The geometry model is described in Section A. It comprises

The model we study in this paper is intended to describe 3Dset of coefficientsy (wavelet transform of) conditioned
natural surfaces such as planetary or asteroid relief, as welluig®n the roughness parametersy and q. The reflectance
optical images of these surfaces, taken under different viewinmpdel is described in Section B and is made of coefficients
and lighting conditions. w (wavelet transform ofp) of roughness parametets we

Natural image statistics can be efficiently described by 28lso define a model magp and scattering parametess The
models, as shown in various studies such as [1]-[5]. Thesamera and light parameters are denote®byAn image! is
image models are mostly bidimensional, and they captusbtained fromS and® by rendering, as explained in Section
some of the characteristics of natural objects, such as sc@leAny observed imageX depends on/ and ® through a
invariance, spatial adaptivity and various roughness or regiegradation model given in Section D.
larity properties. Within a Bayesian framework [6], they can The relationships between all these variables are given as
be used to infer the model parameters from an observation éographical model in Fig. 1, where each arrow represents a
a set of observations), thus providing estimates of the modelsmhditional density, and each leaf node a prior density.
characteristics.

However, an image is not a simple representation of =2
natural 3D object. It is in fact a measurement, corrupted Surface model S
blur and noise, of a 2Penderingof such an object. Therefore
it is not appropriate, in general, to model an image direct

as a natural phenomenon, and there is usually no sim @"
correspondence between the inferred 2D model paramet

and the 3D surface parameters (the former are usually
complex mixture of the latter), except in some simple cas a @ ‘
[7]. Therefore the imaging model should be taken into accou [Rendering | ° °
Furthermore, the object model should relate to the physig 7
Rgndered Opserved
image image

Il. GENERATIVE MODEL

I. INTRODUCTION

Observation
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(camera+light)
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properties of the studied surface, such as shape, reflecta
roughness etc.

We propose to build a full generative model that combines
3D surface model with a realistic imaging process to descri
both the scene and the various observations of this scene. 1
model is described in Section II; the surface model includegy. 1. Graphical model, or hierarchy of the random variables in the proposed
topography, reflectance and various hyperpriors, whereas #heerative model, includingndering andinverse wavelet transform(IWT).

roughness
parameters




A. Multiscale surface geometry model black points on Fig. 2). Then, the former are predicted from the

Fractals have long been used to synthesize realistic lookifger usingB;. The difference between actual and predicted
planetary terrains, because of their resemblance to nat failices gives us theavelet detailssince it represents at each
objects [1], [8]. From a qualitative point of view, they certainI)Jevel the difference between a smooth approxmatlon and the
exhibit similar statistical properties, such as scale invarian@tual ”sur_fa(’:,e._These details are topologically located at the
We propose to derive a multiscale roughness model tgme "white” sites as the midpoints, of indgx
accoun_t.s for these prqperties, by building an appropriate w; =v; — B (V(vj)) (1)
probability density function of the vertex variables[16].

In this paper, we are interested in modeling any kin¥iv
of surfaces, such as asteroids or entire planets, which 3
topologically different from flat open landscapes commonl
used in terrain simulation. For this purpose, we choose
use a subdivided mesh [9] as the topological support .of
On each site of this support lies a 3D vertex variable. Th
support is semi-regular, since we start from a root mesh of Vi — Vi +Tzwj 2
fixed connectivity (such as a hexagonal grid in the planar case, ek
or an icosahedron _in the sp_herical case), then we subdivi_de i‘:inally, the wavelet transform is performed by recursively
regularly by recursively adding a vertex between each pair Qﬁplying Eq. (1) to the "white” sites then the lifting at the

ithout lifting, the wavelet functions would not have sufficient
oothness properties, such as spectral selectivity, needed to
pture scale properties of natural surfaces. Therefore we use
e lifting scheme [12], consisting of adding to each "black”
vertex (indexk) a linear combination of the nearest wavelet
gsetails at the "white” sites (index). We chooser = 3/4.

existing vertices (see Fig. 2). "black” sites, in the reverse order from the subdivisioW,
times. The result isN levels of details, plus one coarse

E> @ approximation of the mesh at subdivision level N. It is
simple to invert, starting with the lifting step and replacing
the addition by a subtraction in Eq. (2), then inverting Eq.

Fig. 2. Subdivision scheme used to produce a finer mesh from an existilg Which consists of predicting the midpoints by usify
triangular mesh: a new vertex (white) is added between each pair of 2 vertieesd adding the coefficients;. Filtering the detail coefficients

(black), using a prediction or interpolation rule. provides a simple mesh smoothing technique [13].

A possible way of studying fractals is to look for statistical 2) Local scale and direction:The wavelet functions are
self-similarities. Simple probabilistic estimators can be usé@ftually defined in a topological space, which is semi-regular,
instead of looking for repetition and scaling of particulafd do not reflect the local geometry of the studied object.
geometrical shapes. If there is a scale invariant probabililus, the coefficients encode absolute variations of the ge-
function fitting to the data, the object is said to be statisticalfMelry between two approximation levels, regardless of the
scale invariant, and we can call it fractal. Usually a spectr@i?€ Of the triangles in the mesh. However, a given variation
representation such as the Fourier transform (when availagi@fs not have the same physical meaning for different point
gives access to the distribution of the average size of objél@nsities. To account for that, we define the notion of local
features as a function of the scale, regardless of the locatigf!e: This scale has nothing to do with the (integer) levels
For perfect spherical objects, spherical harmonics providePhthe transform: at a given level there is a mixing of various
powerful spectrum analysis tool. However, the surfaces \§&@/€S depending on the local mesh density. The local scale
model have an irregular sampling in general, since the radi@§ v i defined so that we can account for local deformation
variations are large w.r.t. the object radius, therefore we prefdfreach triangle (see Fig. 3). is the length of the edge, v,
to use a more flexible tool such as wavelets in order to accd@sthe approximation meshy (is the midpoint of (a, b)), I
the scale of geometric features. is a distance fromv; to a pargnt of order 2, anq the angle

1) Wavelet transform of a surfacélow that the topology @ encodes the skew of the tnalngle. The sc_:ale is actually an
is properly defined, how do we deal with the 3D geometry®/€rage of the scales of both triangles sharing the same edge.
The key point of this subdivision scheme is the new vertex 3 2 o —1/2
prediction, which is achieved by interpolation. The simplest s; =L <4 TQ(COSG +sina)” + 4> 3)
is to take the midpoint of the edge, but leads to an unwanted
piecewise planar surface. Therefore we prefer using a smooth
scheme [10], involving 8 parents for each new vertex instead
of 2. We use this scheme in the regular case (both edge
vertices have 6 neighbors), otherwise we use another one [11]. Va O Vo
If V(v;) denotes the 8 neighbors of a new vertex the L
prediction function s denoted b, (V(v,)). T o e

A subdivided mesh at level is given. The basic idea is ' ' '
to split the sites into two interleaved sets: the topological Like the approximation coefficients, the wavelet details are
midpoints and their closest parents (respectively white aB® vectors. The former have an obvious meaning, i.e. the same




object at a coarser resolution, whereas the latter embed detslilsuld not have any influence on the actual object shape.
both along and orthogonal to the surface. To provide a really model involving them can be considered as a sampling
useful transform, we have to separate these two componenggularity prior, whereas the model of Eq. (5) acts as a surface
respectively the real geometric details (variations normal to teenoothness prior. We define a simple uniform prior on the
surface, denoteav; ) and the surface sampling irregularitiesscaled coefficientwy /s; with the smoothness parametgr
(variations parallel to the surface denotw#).

3) The surface modelUsing wavelets on meshes we can P(wl _ 012 6
perform the multiresolution analysis [14] of a surface for (wi|7) ocexp WZ|WJ‘/SJ| ©)
any topology, defined on a subdivided mesh. We have used !
such a representation of the asteroid 433 Eros; the geometryVe express the prior distribution of the verticBév) in the
was given by the NEAR mission [15]. This way we havavavelet domain instead of the vertex domain Byw), and
checked that this object is statistically scale-invariant [16lhe conditional independence leadstow) = P(w*)P(w!).
As shown in Fig. 4, the amplitude spectrufy estimated by Then the verticesr are obtained by inverse transform wf
the spatial average of the amplitude of the geometric detaj
< |w]+ | >, can be modeled by a scale invariant law whdge
is a constant:

log <|w}[>= g log(s;) + log Ag (4)

Here, the local scale is related to the local spatial frequenc
f by s=1/f. The scale invariance implied(f) = Ao f 79,
which describes the so-called “1/f” noise, a widely used mod

for natural objects [1], [3]. Fig. 5. Surfaces generated from the fractal model with 1.1 and uniform
roughnessX (left: A=0.5, middle: A=1.5, right: A=5). We have used the
renderer described in Section 11.C. with identical camera and light directions.
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AR
B 3r ﬁ*ﬂiﬁmﬁﬁx . Images of natural surfaces are the product of albedo and
2 4T e, - 1 shading. We propose to model the albedo field using existing
% 5+ ﬁm}mﬁwﬂ% 7 natural image models [18], [19], which capture both the scale
s br . . . . “f.  invariance and the spatial adaptivity via a multiresolution ap-
° '7_1 0 1 5 3 4 proach. The shading is modeled through a reflectance function

x = - log local scale f that depends on the surface geometry (verticesind the

Fig. 4. Log-log plot representing the average size of the wavelet details of taBservation parametef®.
astero'id 433 Eros as a function of the local scale, illustrating the statistically To pe more realistic, a model map should be included to
scale-invariant behavior of the surface. account for the spatial variability of the terrain in real-world
This can be seen as a probabilistic model of the wavelgirfaces. This map consists of a discrete random variable
coefficients. It is closely related to a fractional Browniafyr each vertex of index, and represents a local class of
motion [17], used to describe natural images. We extend thigrain (such as rock type, water, forest...); each class relates
kind of model to natural surfaces (see Fig. 5). This wavelg§ a different albedo and reflectance function. More precisely,
transform, like more traditional 2D wavelet transforms, helggr each value ofin, we have a multiscale albedo model of
decorrelate the vertex random variables since the surfgggor parameters;, governed by the conditional distribution
exhibits a self-similar behavior. Moreover, it conserves the (- |;), and a parametric reflectance functigh with the
number of coefficients since it is critically sampled, thereforgyrresponding conditional parameter dendfti: | m).
we can reasonably assume that each normal wavelet detaithys we define a hierarchical model as follows: there is a
coefficient can be accurately modeled as an independgfbr distribution of the classes denoted B(m), then we
random variable. To simplify, we use a zero-mean Gaussigfave conditional densitie®(c |m) and P(x |m), then the
We build the joint distribution according to Eq. (4), and Weybedo modelP(p | ¢) and the reflectance modg:.

define); as local roughness parameters: Let us focus on the albedo density. We can derive a
multiscale model based on wavelets on a mesh, inspired from
P(w* |\ q) xexp | — Z by sj—?q ]w; |2 (5) the geometry model. To ensure the physical constraints on the
; albedo, let us first define a modified albefiec R such that

p = u(p) and p € [0,1]. We chooseu(z) = (1 + e *)~!
which is a bijective sigmoid, so that we can easily use the
gé%sity of p instead of the density gb. Therefore, we need
to use the Jacobian’:

Thus, we construct apatially adaptivefractal model applica-
ble to a broad range of natural surfaces, whose properties
generally spatially varying.

On the other hand, the parallel coefficients are related
to the smoothness of the surface sampling and their value P(ple)=P(ple) 1 (p) )]



We propose to use the same analysis scheme as in the previmusthe setV (p), then multiplying them by a space-varying
section to derive albedo wavelets. On the mesh, we can fifattor K, encoding the exposure time and various transmission
define the albedos on the same topological sites as the verti¢astors, as well as a geometric attenuation factor.

then we get one albedo per triangle by averaging over the 3 A
triangle vertices. This way it is straightforward to apply Egs. p=K Z W, (10)
(1) and (2) using the scalar albedos instead of 3D vertices, in AEV(P)

the prediction scheme as well as in the lifting step. To maKeée irradiance is given by multiplying the direct light source
a physical interpretation of the wavelet coefficients, we keéptensity 7*, the albedg and the shading functiofi, which
the same local scale estimatgrelated to the local geometrydepends on the surface orientation (triangle normal),

of the mesh. We denote the scalar albedo wavelet detailsdnyd the camera and Ilghtlng direction$ and u*, through

wj; their density is then given by: the incident angle§l ,d)l and the viewing angleé,. ,qﬁf
as defined on Fig. 6. There is also a non-directed light of
P(wle) O<eXlD( ZEJ (wj/s;5) ) 8 intensityI° that accounts for ambient light and interreflections.

The corresponding shading function is denofdand only
The final albedos are thus obtalned from the coefficients abalepends on the triangle normal and the viewing direction.
by inverting the wavelet transform, averaging to get one albedo A 10 s0/nA AA . A
per triangles”, then remapping intd0, 1] by the functiony. L% =p (I 0 o) +1 f( ¢z NEE )) (11)

C. Accurate rendering with derivatives In the following we assume a Lambertian model, but this

. ' 4n easily be extended to more realistic parametric reflectance
We need to produce an image from a fixed surface mo{?uncﬂons as bro osed by Oren & Nayar in [21]. Then we
S and a set of camera and light paramet@s (this is brop y Y

calledrenderingin computer graphics). We assume a pinhol%Irnply havef = cos 61 = n®-u* and/? becomes a constant:
camera model, which is a simple way to perform perspective LA =p® ([0 4+ 1 n® ‘u*) (12)
projection, and for the light both a point source at infinity
and an ambient componer® contains both internal camera
parameters (such as pixel size and focal length) as well
as external parameters (position and orientation) and light Camera
parameters (direction and intensity). The major challenge is direction
to compute accurate images, as well as their derivatives, i.e.
how pixel intensities vary with changes to the surface and the
observation parameters. The derivatives are required to per-
form the reconstruction via any gradient-based deterministic
optimization algorithm.

We denote byl,,(S, ©®) the rendered intensity for the pixel
p. This intensity is a product between surface albedo and vAL
local shading, which depends on geometry, lighting conditiorfd9- 6. lllustration of the light and camera directions and corresponding
reflectance functions, and camera position and orlentat|ongIeS for a triangle? of the 3D surface.

Computing accurate pixel intensities requires working in the 2) Accurate visibility determinationWe have developed a
object space, which means performing visibility determinatioast pixel integration method that computes, for each pixel
for each pixel using computational geometry. This is the only the exact visible aread?* of all the projected triangles
way of obtaining an image that precisely corresponds to a 3D that overlap this pixel. It is an object-precision technique,
model, which is critical in some cases (see Section llI-B). since the size of the pixels does not affect the accuracy. This

1) Discrete intensity computationiVhen there are no oc-js made possible by combining bucket sorting (to build a
clusions or shadows, the contribution of a triangleto a |ist of triangles for each pixel) and depth buffers (to quickly
pixel p is the area of the triangle/pixel intersection polygogeject totally hidden triangles), and by restricting the complex
A2, times the irradiancé“. We denote this contribution by computations to the pixels where they are really required. This
the fractional poweiV, 2 is used for both hidden surfaces and shadows, since shadows

WA — A0 1A ©) are surfa(;es hidden from Fhe light source.
P P We notice that partial triangle occlusions occur only along

When there are occlusions, the polygon is processed for hiddemves (projected ridge lines), thus dramatically reducing the
surface removal, as explained in paragraph 2 and Fig. 8. number of pixels of the image that require complex geometric

Here the irradiance is assumed to be piecewise constant. ¥geputations to perform hidden surface removal. Off of ridge
could use a more accurate piecewise linear model (cf. Phdimgs, triangles are either fully visible or fully hidden.
model [20]), as will be discussed in Section IlI.C. First, we determine the occlusion map, by rasterizing each

The total intensity for pixep is obtained by summing the edge of the mesh that defines a ridge, as follows. The normal
fractional powers over the triangles projected into pixel to a triangle is used to test whether the triangle is front-facing

Light
uq direction

vA2Q
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(n®-u* > 0) or back-facing. A ridge segment is defined ataken into account accurately, at sub-pixel level. This is made
an edge separating a front-facing from a back-facing trianglggssible by reusing the technique described above.

such that the front-facing one is the closest to the cameraFirst, an orthographic projection along the light direction

(otherwise it is a valley), see Fig. 7. The occlusion map is used to determine, for each triangle, the list of occluding
defined by the set of pixels that intersect the ridge segmentisangles. Then, for each occluded triangle, the area not in
shadow is determined by subtracting the occluding triangles,
projected using a different projection this time (along the light

direction, but onto the shadowed triangle).

It is also possible to compute shadows at a triangle level, by
determining for each triangle the area visible from the directed
light source (as we do from the camera for hidden surface
removal). Then we define a shadow rate for each triangle as
the visible to total area ratio, which multiplies the second
term in Eq. (12), so that triangles in full shadow will only

receive ambient light. This approximation gives very good
Fig. 7. Letu,qg. be the oriented edge (according to the front-face triangl 9 PP 9 y 9

e .
and the ridge normal the averaggiqge = (Nfront + Npack)/2. The front- ')eSUItS when _the trlangles. are; small.
facing triangleA .o is closestto the cameras [Uyidge, U*, Nyidge| > 0. 4) Computing the derivatives:The knowledge of the

Then, we perform occluded surfaces removal only for th%envatl\{es of the image intensity w.r.t. any parameter of the
nerative model, such as the surface or the camera and light

ixels in the occlusion map, which typically represent less th&s o . . T
2% of the image P ypically rep parameters, is highly valuable. First, efficiedéterministic

The principle of visible surface determination relies c)qutimizationtechniques require derivatives to estimate model
recursively subtracting all the triangles that are in front Jrarameters f“’”ﬁ observed data. Second, they can he_lp com-
a particular triangle, thus obtaining a polygon, as shown te theuncertaintyof the generated models by providing a
Fig. 8. Such metho,ds exist in computer grapﬁics [22], 2 aussian approximation of the model probability distribution.
but they do not perform recursive triangle subtraction ,usi oreover, the intensity derivatives can be used to compute the

large triangular meshes. In addition to the geometry of lin tical flow related to changes in the vertices or camera pa-

segments we use the topological connectivity of the meshrﬁ)meters, thus enabling us to aeibtion blurto the rendering

design an algorithm that is robust to vertex and edge ali ﬁgheme.
" ; g g The basic idea of the computation is the chain rule. All

ments occurring when intersecting adjacent triangles with a d to k is the derivati f funci ¢
polygon. The polygon areas involved in the fractional intensifﬁ\/e need to know Is the derivatlve of any function w.r.t. any

computation have to be determined, as well as their derivativé@.r',ables this function directly depends on: for instance, the

We keep track of the original mesh vertices that generate all tﬂ%iﬁ'ogsﬁ a \t/erFex fonl);'deplends on ﬂ}e gamerg paratr;]weters
geometric intersections involved in the subtraction algorithm1 e Vertex, a fractiona areﬁ% only depends on the

(white vertices on Fig. 8). This way, it is possible to comput rojected vertices Oﬁ_ and the occluding trlangles. Let us
the intensity derivative w.r.t. any vertex, even in the case note bylJ and V' arbitrary vectors (such as vertices, albedos

complex occultations involving many vertices. or areas). If we assume_that we haveectorsZ; functions qf
U, and thatV is a function of allZ;, then the corresponding

derivatives are multiplied according to the chain rule to obtain
the derivative ofV w.r.t. U:

ov . [oV] [0Z;

Y= - : 13

) 2. oz 0] 43
This can be extended to a full derivative tree, encoding to the

hierarchical relations between all variables in the rendering
procedure, from(S, ®) to the intensitied,,.

front

PIXEL p L
/Vlsblearea

’W\a“g\e b

Verticesinvolved in the D. Observed image formation model

visible area computation: In principle, the observed image is formed in 3 steps:

® Triangle A 1) the projection onto the image plane, which produces a

O Ocdudingtriangles e capvise constant image since we assumed that the irradiance
Fig. 8. For a pixel, illustration of the visible part of the trianglé (dashed iS constant over triangles; 2) the convolution by the point
polygon), of areaA_ﬁ- It is obtained by subtracting all occluding trianglesspread function (PSF) of the instrument; 3) the integration
from the triangle/pixel intersection polygon. over each pixel. However, an equivalent model consists of

3) Computing shadows:Shadow boundaries carry veryreplacing steps 2 and 3 by the convolution with a global PSF
important information on the 3D, independent of any albedocluding both instrument and pixel PSF, then point sampling
or reflectance estimation errors. Therefore they have to be a rectangular grid.



All the densities involved in the equation above have been
defined in Sections II.A and 1.B. We give an example of
simulated observed image in Fig. 9 for a known surf&ce
and parameter®. We show simulations from the geometry
model in Fig. 5 (assuming uniform albedo).

i
i I1l. POTENTIAL APPLICATIONS AND CHALLENGES

Fig. 9. A simulated observed image (blurred and noisy rendering) of the | .. b he |
asteroid 433 Eros surface observed during the NEAR mission (3D model n many cases, computer vision can be seen as the inver-

from the NASA Planetary Data System) [15]. Uniform albedo, Lambertiagion of a generative forward model. When such a model is
reflectance model, ambient/direct light ratio 10%, Gaussian blur (width grohapilistic, a natural way of performing the inversion is via
pixels) and Gaussian noise (variance 1% of the max. image intensity). . . . . . .
Bayesian inference [6]. Basically, it consists of computing
If we make the assumption that the global PSF can Ige posterior density of the variables of interest, which is
well approximated by a piecewise constant function, magkoportional to the joint density defined by the generative
of linear combinations of the pixel PSF, then steps 2 andngodel. In general the full density is difficult to compute, and
can be swapped, and the convolution can be performed bpre prefers to estimate its maximum, or its mean. Whenever
discrete filter denoted, after performing the pixel integration possible it is also useful to estimate the covariance matrix
as explained in the previous sections. Then, we simply ad@&the variables, since it represents the uncertainty on these
discrete convolution step after the rendering, denoted&f. variables.
The proposed rendering technique does not produce aliasinghe model presented here can have multiple applications:
artifacts since it simulates the image formation process (ma¥e can try to estimate the surface geometry, the albedo map,
fast rendering algorithms produce aliased edges, since tligg reflectance map, the scattering properties and the fractal
rasterize triangles without performing any pixel integration)dimension of the surface, etc. We can also estimate the obser-
The deterministic image formation, including both renderingation parameters to perform accurate camera calibration, PSF
and degradation by blur, can be summarized as follows: estimation, light calibration, etc. Estimating the reflectance

. Project the surface vertices onto the image p|ane; map m consists of performing albedo classification. It is
. Determine the visible areasof each triangle, for each very important to understand that the classification should be
pixel of the image (paragraph C.2); performed on a physically meaningful terrain reflectance, not

. Compute the shadowdor each triangle (paragraph C.3):0n image intensities which are the product of both reflectance
« Compute the irradiance for each visible triangle by and shading. The proposed model should help carry out such
using a reflectance model (Eq. (12)); a classification since it clearly separates these two quantities.
« Form the intensity I for each pixel by combining visible
areas and irradiance (Egs. (9)-(10)); ) ) ]
« Blur the image by convolution with a discrete PSF. Surface recovery consists of inferring the 3D surface model
So far, we have only described the deterministic part of tﬁé‘d the reflgctancz r|nar5) from al set_ of |rr|1agebs. As seen ;rom
image formation. The intensity measure in the camera seng?ﬁ generaﬂvg m% el the complex interplay ﬁthen.sur acg
is a random process, because of the pixel noise (mainly qigometry and re _ectance_ maps ca_mnot easily be Inverted.
to photon, readout and thermal noise). We assume it can 'géere does not exist a unique relation between an observed
modeled by a stationary white Gaussian noise of variarice 'mage and the underlying 3D object. However, using multiple
This enables us to write the conditional density of afnages helps constrain the solution to the inverse problem.

observed imag€, given the rendered intensify This density Mpreover, the use of prio_rs such as the one; we.describe in
is also the likelihood of the paramete(S, ©): thlg paper further constrains the _solutlon, acting like a regu-
larization process. Then surface inference becomes possible,

(X—H~*I(S, @))p as preliminary results have shown.
P(X|I(S,©)) ocexp | — Z 902 (14) By restricting the observation parameters (camera parame-
P P ters and light direction) to avoid shadows and occlusions and
The hierarchy of the variables is shown in Fig. 1: each arratlve model to a height field, we have shown that even when
represents a conditional density, and each leaf node a dena#ing a simplified version of the accurate renderer described
encoding the prior knowledge about the related parametir.this paper,accurate 3D reconstruction is possible from
Thus we have the full joint density whei —! denotes an both simulated [24] and real dataWe have also assumed a
inverse wavelet transform and the Dirac distributiéresccount Lambertian scattering model. A conjugate gradient algorithm
for deterministic relations between variables: was used to maximize the posterior density given all the
P(X, S, ®) = P(S)P(®)P(X |I(S, ©)) (15) ggfaeé\r/gshirlr:acgis, with derivatives computed as explained in
P(S) = P(q)P(\)P(v)P(w+ [¢,\)P(w! [7)d(v—W~'w) A physical model of the Duckwater, Nevada, area was
x P(m)P(k|m)P(e|m)P(w]|e)d(p—u(Wlw))u'(W-tw) constructed from the USGS digital elevation map. A CMOS

A. Surface recovery from multiple images
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panchromatic camera was used to image this model in sunligh1100
(see Fig. 10). A set of 16 images with different poses were ™
taken. Camera pose and internal parameters were determine *
for each image using the background checkerboard, and the ™
sun angle was measured using a sundial. The inference proces
started with the initial estimates for camera pose and sun =
position, and a flat surface at a proper base elevation, with "°
uniform albedo. A pseudo-Newton method was used [24]. At

each step of this optimization procedure, a quadratic form was

optimized using a conjugate gradient algorithm (the posterior

density was approximated by a Gaussian). A 5 step multl—a

grid approach with an initial coarse mes3¥, x 37 vertices, 100
increasingly refined t&77 x 577 vertices was used to avoid e
local minima problems. Before the final step, re-calibrating =
the camera pose and sun position vastly improves the surface ,,
estimates, see [25]. o

The inference converged to an estimate that is close to
the original model (see Fig. 11): we obtained a maximum
error less than 15mm with a 2m distance between camera °°
and model. No existing stereo reconstruction method gave
acceptable results in this case.

We have done another experiment with a spatially variable
albedo, by painting the same physical model mentioned aboie
(see Fig. 12). The same inference procedure has been used,
but this time the albedo was allowed to vary. The inferred
surface geometry shows RMS errors between 1 and 2mm, and
maximum errors usually less than 10mm, which is better than
in the constant albedo case. The results are shown in Fig. 13.
The albedos look acceptable but their precision can not be
guantified, since they have been added by hand (there is no
ground truth).

Having a textured surface obviously helps reconstruct the
3D geometry. However, we have noticed some interaction
between albedo and geometry, where abrupt albedo differences
generate false slopes. To a lesser degree, the same problem oc-
curs with extended albedo differences: smooth albedo variation
generates shallow slopes in the heights.

Sixteen images proved sufficient to recover a good surface
from a uniform albedo plain surface at the known mean
elevation. These images were well distributed w.rt camera
positions and sun directions, with camera positions known to
~1% of distance, and sun direction tol degree. Starting

i L i h Y
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) ) . ~ Fig. 11. a: estimated geometry moddd; original topography. The units are
Fig. 1_0. One of the 16 observed images in our constant alpedo_experlmeﬁmimeter&1; 3D view of the height fiel&e = f(z,y); 2: contour plotz =
showing the checkerboard and the sun dial used for sun calibration. const, with contours every 10mm.



from a 37x37 height grid with uniform albedo, most details
of the 289x289 known height grid are recovered with only
4 images. Most distortions can be attributed to cross-talk
between the albedo and height fields where true albedos are
rapidly changing. The current system does a straightforward
maximum likelihood convergence, with all relevant parameters
either assumed known or estimated. It is very prone to falling
into local minima, particualrly when run with poor lighting
estimates. We believe that adding the multiscale prior model
proposed in this paper will help stabilize the solution.

On a 1.2GHz Athlon PC, run times are around an hour per
1024x1280 image, when doing a 5-level multi-grid inference,
qguadrupling the number of cells at each level, and allowing
a moderate number of alternating surface and camera/lighting
reestimation eycles at each level. Each additional multi-grid
level roughly doubles the run time. Convergence of the con- 4,
jugate gradient at each step of the pseudo-Newton method is
achieved in around 200 seconds. a

We have demonstrated the feasibility, and the reduced com-
putational complexity, of the posterior density optimization
using intensity derivatives w.r.t. model parameters, in the case
of height fields. By using wavelets on subdivided meshes
as explained in Section II.A, it should be possible to infer
objects of arbitrary topology such as entire planets, or aster-
oids. We have to investigate various ways of performing the
optimization, for instance allowing the vertices to move in any
direction, or constraining them to move along the local surface
normal. When working in arbitrary topology, the initial mesh
has to be deformed to fit the data. There are multiple solutions
corresponding to various ways of arranging sampling points
on the same surface. The mesh regularity prior described in
this paper needs to be added to facilitate the optimization and
improve the sampling regularity of the surface.

The generic model-based vision approach presented here °
avoids most of the shortcomings of existing methods in surface
recovery, such as shape from shading [26] and shape from
stereo [27]. The former is difficult to apply when the albedo ™
is spatially variable, while the latter usually produces a sparse
point set as a surface estimate. We can reconstruct continuous °
surfaces from multiple images, using different viewpoints and
various lighting conditions.

(o4 300 400 500 600 700

Fig. 13. a: inferred albedo field (black=0, white=1p; inferred geometry

Fig. 12. One of the 16 observed images in our variable albedo experimehgdel;c: original topography. The units are millimeters. The topography was
rendered using Matlab, with the same color maps and limits, emphasized by
a directed light.
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